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Model of a Joint Measurement of Different Spin
Components

Peter Kienzler1
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A Stern±Gerlach type experiment is presented as an unsharp joint measurement
of spin components. Using a simple realistic magnetic field, the interaction
Hamiltonian reads H 5 m ( 2 s xx 1 s zz). In the framework of operational quantum
physics the apparatus is represented by a Gaussian-shaped wave function. The
probability reproducibility condition leads to the nearly best joint spin-x-z-
observable formulated as a positive operator-valued measure. Observable and
measurement are discussed within the quantum theory of measurement.

1. INTRODUCTION

The concern of this paper is the understanding of the joint spin observ-

able, described first by PrugovecÃki (1977) and later by Busch and Schroeck
(1989), and how it emerges from a realizable measurement (Martens and de

Muynck, 1993). In accordance with operational quantum physics (Busch et
al., 1995b), the measurement can be regarded as the defining property of the

measured observable. Using the quantum theory of measurement as formu-

lated in Busch et al. (1996), the transition of the noncommuting spin properties

toward commuting momentum properties is described explicitly by premea-
surement, with and without reading. This way the two major interests, incom-

mensurability and objectification, can be well separated. The premise of the

treatment is the possibility of the objectification of commuting observables.

In the following section the measurement model is introduced. Section

3 is concerned with the positive operator-valued (POV) measure and the

instrument or state transformation-valued (STV) measure. The characteriza-
tion of the measurement is treated in Section 4; some final remarks are given

in Section 5.
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2. THE MODEL

The Stern±Gerlach type experimental setup is sketched in Fig. 1. An

oven emits atoms which possess a resulting magnetic moment, e.g., silver
atoms. These atoms pass through a magnetic field and finally impinge on a

photographic plate. The description of the experiment in Hilbert space is

illustrated in the lower part of Fig. 1. The Hilbert space of the whole atom

is the tensor product of the Hilbert space of the center-of-mass motion and

that of the spin. Here the center of mass corresponds to the measuring
apparatus. We assume the distribution of the center of mass initially to be

Gaussian shaped, the density operator being r i
A 5 | c i

A & ^ c i
A | , with c (x, z) 5

(1/ a ) exp[ 2 1±2 (x 2 2 z 2)/( D 2 " 2)], where a gives the normalization, and D is

the width. Let the magnetic field of the Stern±Gerlach experiment be given

by B 5 B0( 2 x, 0, z) The Hamiltonian then reads H 5 2 m B B0( 2 x s x 1 z s z),

where m B is the Bohr magneton and s i are the Pauli matrices. As the pointer
or readout observable the sharp momentum observable is taken, which is

defined by the projection-valued measure x j * X | px pz & ^ px pz | dx dz on the

photographic plate. It is called the impulsive measurement approximation

(Busch and Schroeck, 1989; Kienzler, 1996) and maps the momentum space

consistently on the position on the screen. Thus within a good approximation

the probability measure for the momentum can be regarded as the distribution
of the particles impinging on the screen. Figure 2, left, shows the planar

symmetry, which is the result of a totally symmetric initial object state, and

Fig. 1. The experimental setup and its description in Hilbert space.
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Fig. 2. On the left, the planar symmetry of the resulting picture of the screen with the initial

state (1/2)I and on the right with | 1 x & ^ 1 x | in units of the initial width of the wave packet

[for details see Kienzler (1996)].

Fig. 2, right, shows the correlation of an initial spin-up state with the probabil-

ity for the atoms to hit the upper half of the screen. To complete the measure-

ment scheme one has to introduce a pointer function f, which maps the value

space of the momentum observable on the value space of the observable,
which is obtained through this measurement. The intuitive way, considering

Fig. 2, is to map the upper left quarter of the screen to 1 1 , the upper right

quarter to 2 1 , and so on.

3. OBSERVABLE AND INSTRUMENT

Having a measurement scheme } consisting of the Hilbert space of the

apparatus *!, the unitary evolution U 5 e 2 (i/ " )Ht, the pointer function f
defined above, the initial state of the apparatus r i

A, and the pointer observable

Px ^ Pz , one can consider the probability reproducibil ity condition as the

defining property of the observable E that is being measured (Busch et al.,
1996). It reads as follows (tr denotes the trace and X the set in which to

measure), " X " r Ob ,

trOb[E(f 2 1(X )) r i
Ob]

5 tr*[U( r i
A ^ r i

Ob)U
1 # X

| px pz & ^ px pz dx dz ^ I ] (1)

According to this the observable is a normalized mapping of the Borel sets
{ 6 , 6 } into the positive operators on C 2. As is well known, the resulting

effects as positive operators acting on C 2 can be represented by ( a , m ) P
R 4, i.e., E 6 , 6

x,z 5 ( a /2)(I 1
-

m
-

s ), with |
-

m | # 1 and a # 2/(1 1 |
-

m | ). Using

the discretized version, it is easy to show that because of the planar symmetry
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the value of a is directly proportional to the size of the corresponding Borel

sets. Furthermore , it is possible to combine the strength of the magnetic field

B0, the interaction time t0, and the width of the initial wave packet of the
apparatus into one interaction parameter j 5 m B0t D / ! " . The resulting effects

depend just on the absolute value of m 5 |
-

m | 5 m ( j ). This is shown in Fig.

3. The effects now read

E 1 1
x, z 5 1±4 [I 1 m ( s x 1 s z)], E 1 2

x, z 5 1±4 [I 1 m ( s x 2 s z)] (2)

E 2 2
x, z 5 1±4 [I 1 m ( 2 s x 2 s z)], E 2 1

x, z 5 1±4 [I 1 m ( 2 s x 1 s z)] (3)

Let us emphasize the problem of the size of the eigenvalues. It is easy to

show that the eigenvalues do not exceed 1/2. Because of this there is no way

to consider them as properties. Just the marginal effects corresponding to the

reading on the half of the screen can be interpreted as still very weak proper-

ties, because even they cannot exceed 1/ ! 2, the limiting value of the theoreti-

cally best achieved joint spin observable (Busch, 1986).
Now it is shown that the realistic measurement defines a joint spin

observable that is very close to the best possible joint observable. The question

arises whether there is a possibility to ascribe this weak property to the object

system. For this one has to regard the dynamics on the object level, i.e., the

state transformation. The state transformation is represented using the Poinc-

areÂsphere, that is, the parameter representation of the effects with a 5 1.
If l i is the PoincareÂvector of the initial state, the final state after the

measurement is represented by l f
x/z 5 1±2 [1 1 +( j )] l i

x/z and l f
y 5 +( j ) l i

y,

Fig. 3. The increase of the parameter m of the nontrivial part of the effects as a function of

the interaction parameter j . On the right the decrease of nontriviality of the state is shown.
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Fig. 4. The state transformation from the initial state l i to the final state without reading l f

and respectively for x, z, and x and z reading for a spin-up state (left) and a totally symmetric

initial state (1/2) I (right).

where +( j ) 5 L 1/2
1/2 is the generalized Laguerre polynomial (see Fig. 3). If

the measurement with reading is considered, the state transformation explicitly

depends on the Borel set of the reading scale. The state change by the
instrument is represented in Fig. 4. The left side of the figure shows a pure

spin-up state to get a one-particle mixture l f. When reading `Yes’ on the

upper half of the screen the resulting state has a larger purity than that

resulting without reading. Reading the upper left quarter changes the PoincareÂ

vector of the state into l f
x, z; similarly it happens that the final state is repre-

sented by l f
z in case of reading the opposite half of the screen. The right side

of the figure shows the state change of the total degenerate one-particle state

(1/2) I. It does not change during the premeasurement, but it does with the

readings corresponding to the subsets of the screen.

The main point is that one can visualize the transformation of the state

and the property change. The purity of the resulting state increases when the

reading area decreases and vice versa.

4. CHARACTERIZATION OF THE MEASUREMENT

This section reconsiders important notions of the characterization of a
quantum mechanical measurement and to see what kinds of notions are still

applicable for the joint spin measurement (Busch et al., 1995a, b).

The probability reproducibility condition as defined above is satisfied

by definition of the observable.

The calibration condition

tr[E(X ) r i
Ob] 5 1 Þ tr[Px, z( f 2 1(X )) r f

A]
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is an always true and therefore empty condition, because it always follows

for any nontrivial set X and any initial object state r i
Ob: tr[E (X ) r i

Ob] , 1 [for

the proof se Kienzler (1996)].
The value reproducibility condition states that properties stick to the

object, which means tr[E (Y ) r i
Ob] 5 1 « tr[E (Y ) r f

Ob] 5 1. Again the premise

cannot be reached, but it is possible to state the condition as a maximal

condition. That means that eigenstates remain eigenstates. This would be a

weaker version of the value reproducibility condition, i.e., E (Y ) r i 5 b r i «
E (Y ) r f 5 b r f.

The measurements of the first kind fulfil tr[E (Y ) r i
Ob] 5 tr[E (Y ) r f

Ob].

Of course this cannot be reached, but the statistical information is saved,

i.e., tr[E (Y ) r i
Ob] 5 1±2 tr[E (Y ) r f

Ob] (for m 5 0.606) for the spin-x and spin-z
marginal effects and this means a statistical completeness in x and z.

Repeatability requires a sharp value after the measurement. This cannot

be reached for the same reasons as before. The particle cannot have a sharp
property before, during, or after the measurement, because the property is

intrinsically unsharp.

The presented model shows the need of for very much wider concept

of measurement.

5. FURTHER REMARKS

The first remark is on the transition from unsharp to nearly sharp mea-

surements. It is easy to see how the additional homogeneous magnetic field

B " singles out one spin direction B0 ( 2 x, 0, z) ® B0 ( 2 x, 0, z) 1 (0, 0, Bh).

The second remark is on the spin observable as a covariant observable
regarding Galilei transformations. The measurement above defines, if the

pointer observable is appropriately chosen, a covariant spin observable regard-

ing the rotation R a in the plane U ( a ) E (Y ) U 2 1( a ) 5 E (R a (Y ))

Third, a sequential measurement (with reading) converges to a nontrivial

state [for more details on these remarks see Kienzler (1996)].
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